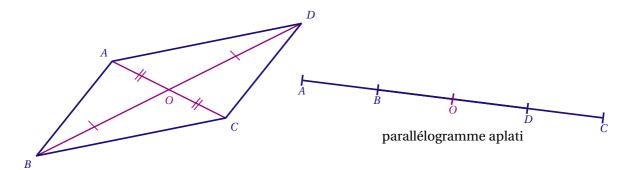
I NOTION DE VECTEUR

1 PARALLÉLOGRAMME

DÉFINITION

Un quadrilatère ABCD est un parallélogramme si, et seulement si ses diagonales ont le même milieu

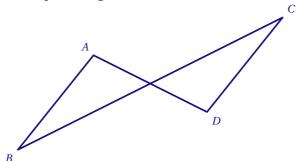


PROPRIÉTÉS

- Un quadrilatère ABCD est un parallélogramme si, et seulement si (AB)//(DC) et (AD)//(BC).
- Dans un parallélogramme les côtés opposés ont la même longueur.

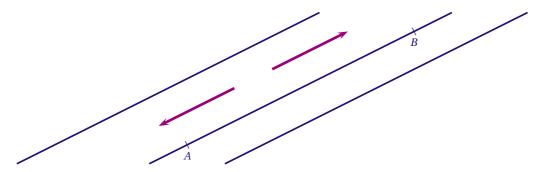
REMARQUE

Dire que dans un quadrilatère, il y a deux côtés opposés parallèles et de même longueur ne suffit pas pour conclure que ce quadrilatère est un parallélogramme.



Dans le quadrilatère ABCD nous avons (AB)//(CD) et AB = CD, pourtant ABCD n'est pas un parallélogramme.

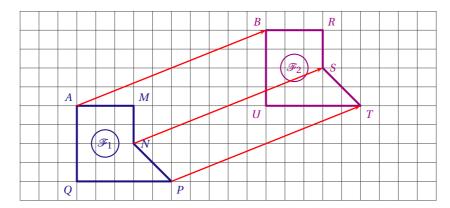
2 SENS ET DIRECTION



- Lorsque deux droites sont parallèles, on dit qu'elles ont même direction.
- Une direction étant indiquée par la donnée d'une droite (*AB*), il y a deux sens de parcours dans cette direction : soit de *A* vers *B*, soit de *B* vers *A*.

A. Yallouz (MATH@ES) Page 1 sur 19

3 TRANSLATION



Le glissement qui permet d'obtenir la figure \mathcal{F}_2 à partir de la figure \mathcal{F}_1 peut être décrit de façon précise par trois caractères :

- la *direction* du glissement est donnée par la droite (*AB*);
- le *sens* du glissement est celui de *A* vers *B*;
- la *distance* du glissement est égale à la longueur du segment [AB].

On dit que la figure \mathscr{F}_2 est l'image de la figure \mathscr{F}_1 par la translation de vecteur \overrightarrow{AB} .

REMARQUE

Les vecteur \overrightarrow{NS} et \overrightarrow{PT} sont aussi des vecteurs de la translation de vecteur \overrightarrow{AB} , on dit qu'ils sont égaux. On note alors :

$$\overrightarrow{AB} = \overrightarrow{NS} = \overrightarrow{PT}$$

DÉFINITION

Soient A et B deux points du plan.

La translation qui transforme A en B associe à tout point C du plan, l'unique point D tel que les segments [AD] et [BC] aient le même milieu.

Cette translation est la translation de vecteur \overrightarrow{AB} .

Cas particuler où A, B et C sont alignés

ABDC est un parallélogramme

ABDC est un parallélogramme aplati

II VECTEURS

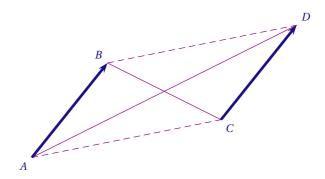
Un couple (A,B) de points du plan détermine un vecteur. A est l'origine du vecteur et B est son extrémité. On le note \overrightarrow{AB} .

1 ÉGALITÉ DE DEUX VECTEURS

Deux vecteurs sont égaux s'ils sont associés à la même translation.

A. YALLOUZ (MATH@ES) Page 2 sur 19

DÉFINITION

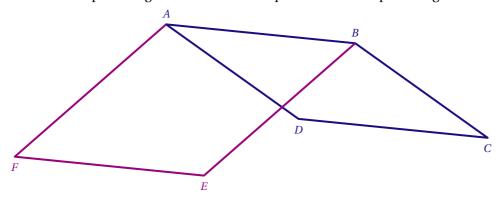


A, B, C et D sont quatre points du plan. Les définitions suivantes sont équivalentes :

- $\overrightarrow{AB} = \overrightarrow{CD}$ si, et seulement si, D est l'image du point C par la translation de vecteur \overrightarrow{AB} .
- $\overrightarrow{AB} = \overrightarrow{CD}$ si, et seulement si, les segments [AD] et [BC] ont le même milieu.
- $\overrightarrow{AB} = \overrightarrow{CD}$ si, et seulement si, \overrightarrow{ABDC} est un parallélogramme.

EXEMPLE: LES TROIS PARALLÉLOGRAMMES

ABCD et ABEF sont deux parallélogrammes. Montrons que DCEF est un parallélogramme.



- ABCD est un parallélogramme alors, $\overrightarrow{AB} = \overrightarrow{DC}$.
- ABEF est un parallélogramme alors, $\overrightarrow{AB} = \overrightarrow{FE}$.

Par conséquent, $\overrightarrow{DC} = \overrightarrow{FE}$ donc le quadrilatère DCEF est un parallélogramme.

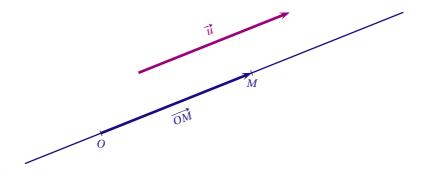
2 REPRÉSENTATION D'UN VECTEUR

Devant des égalités du type $\overrightarrow{AB} = \overrightarrow{DC} = \overrightarrow{FE} = \cdots$, on dit que les vecteurs \overrightarrow{AB} , \overrightarrow{DC} , \overrightarrow{FE} , ... sont des représentants du vecteur \overrightarrow{u} :

$$\overrightarrow{u} = \overrightarrow{AB} = \overrightarrow{DC} = \overrightarrow{FE} = \cdots$$

Le vecteur $\overrightarrow{AA} = \overrightarrow{BB} = \cdots$ est appelé le vecteur nul, noté $\overrightarrow{0}$.

Soit O un point du plan. Pour tout vecteur \vec{u} , il existe un un point M unique tel que $\vec{u} = \overrightarrow{OM}$.



Si \vec{u} n'est pas le vecteur nul, les points O et M sont distincts. Le vecteur \vec{u} est caractérisé par :

- Sa direction : c'est celle de la droite (*OM*).
- Son sens : c'est le sens de *O* vers *M*.
- Sa norme notée $\|\vec{u}\|$: c'est la distance OM.

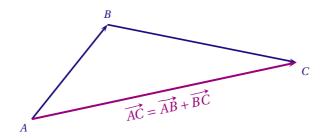
III ADDITION VECTORIELLE

1 SOMME DE DEUX VECTEURS

Soit trois points A, B et C.

Si on applique la translation de vecteur \overrightarrow{AB} suivie de la translation de vecteur \overrightarrow{BC} , on obtient la translation de vecteur \overrightarrow{AC} .

Le vecteur \overrightarrow{AC} est la somme des vecteurs \overrightarrow{AB} et \overrightarrow{BC}



RELATION DE CHASLES

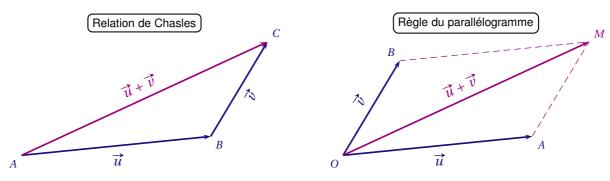
Quels que soient les points A, B et C on a :

$$\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$$

RÈGLE DU PARALLÉLOGRAMME

La somme $\overrightarrow{OA} + \overrightarrow{OB}$ est le vecteur \overrightarrow{OM} tel que OAMB est un parallélogramme.

CONSTRUCTION DE LA SOMME DE DEUX VECTEURS



PROPRIÉTÉS ALGÉBRIQUES

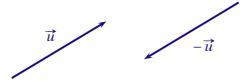
Quels que soient les vecteurs
$$\vec{u}$$
, \vec{v} et \vec{w}
 $\vec{u} + \vec{v} = \vec{v} + \vec{u}$; $\vec{u} + \vec{0} = \vec{0} + \vec{u} = \vec{u}$; $(\vec{u} + \vec{v}) + \vec{w} = \vec{u} + (\vec{u} + \vec{w})$

A. YALLOUZ (MATH@ES) Page 4 sur 19

2 DIFFÉRENCE DE DEUX VECTEURS

OPPOSÉ D'UN VECTEUR

L'opposé d'un vecteur \overrightarrow{u} est le vecteur noté $(-\overrightarrow{u})$ tel que $\overrightarrow{u} + (-\overrightarrow{u}) = \overrightarrow{0}$.



CONSÉQUENCE

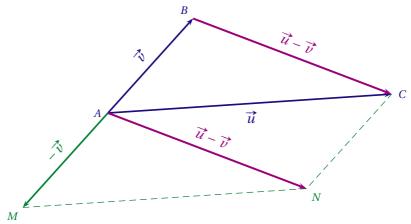
L'opposé du vecteur \overrightarrow{AB} est le vecteur \overrightarrow{BA} : $-\overrightarrow{AB} = \overrightarrow{BA}$

※ PREUVE

D'après la relation de Chasles : $\overrightarrow{AB} + \overrightarrow{BA} = \overrightarrow{AA} = \overrightarrow{0}$

DÉFINITION

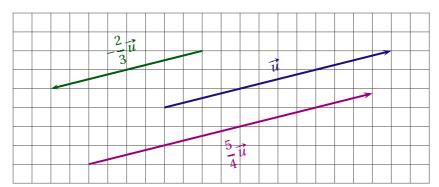
Étant donné deux vecteurs \vec{u} et \vec{v} la différence $\vec{u} - \vec{v}$ est le vecteur $\vec{u} + (-\vec{v})$.



Quels que soient les points A, B et C, $\overrightarrow{BC} = \overrightarrow{AC} - \overrightarrow{AB}$

IV MULTIPLICATION D'UN VECTEUR PAR UN RÉEL

1 PRODUIT D'UN VECTEUR PAR UN RÉEL k

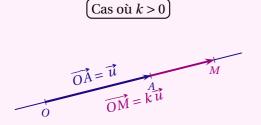


A. Yallouz (MATH@ES) Page 5 sur 19

DÉFINITION

Soit \vec{u} un vecteur non nul $(\vec{u} \neq \vec{0})$ et k un réel non nul $(k \neq 0)$. Le produit du vecteur \vec{u} par le réel k, noté $k\vec{u}$ est le vecteur caractérisé par :

— sa direction : $k\vec{u}$ a la même direction que le vecteur \vec{u} ;



- son sens : le vecteur $k\vec{u}$ a le même sens que le vecteur \vec{u} ;
- sa norme : la norme du vecteur $k \vec{u}$ est égale au produit de la norme du vecteur \vec{u} par le réel k

$$||k\vec{u}|| = k \times ||\vec{u}||$$

- son sens : le vecteur $k \vec{u}$ est de sens opposé au sens du vecteur \vec{u} ;
- sa norme : la norme du vecteur $k \vec{u}$ est égale au produit de la norme du vecteur \vec{u} par l'opposé du réel k

$$||k\overrightarrow{u}|| = -k \times ||\overrightarrow{u}||$$

Ce qui s'écrit de façon générale $||k\overrightarrow{u}|| = |k| \times ||\overrightarrow{u}||$ et se lit :

« la norme du vecteur $k \, \vec{u}$ est égale au produit de la norme du vecteur \vec{u} par la valeur absolue du réel k »

Lorsque $\vec{u} = \vec{0}$ ou k = 0, on convient que $k\vec{u} = \vec{0}$: ainsi, l'égalité $k\vec{u} = \vec{0}$ ne peut se produire que lorsque $\vec{u} = \vec{0}$ ou k = 0.

REMARQUE

Soit A et B deux points distincts, et k un réel donné. Il existe un unique point M défini par la relation $\overrightarrow{AM} = k\overrightarrow{AB}$:

- *M* est un point de la droite (*AB*)
- M a pour abscisse k dans le repère (A; B) d'origine A

2 PROPRIÉTÉS ALGÉBRIQUES

Pour tous vecteurs \vec{u} et \vec{v} et pour tous réels k et k':

$$k(\overrightarrow{u} + \overrightarrow{v}) = k\overrightarrow{u} + k\overrightarrow{v};$$

$$(k+k')\overrightarrow{u}=k\overrightarrow{u}+k'\overrightarrow{u};$$

$$k\vec{u} = \vec{0} \iff k = 0 \text{ ou } \vec{u} = \vec{0}$$

3 VECTEURS COLINÉAIRES

DÉFINITION

Deux vecteurs \vec{u} et \vec{v} sont dits colinéaires s'il existe un réel k tel que $\vec{u} = k\vec{v}$ ou $\vec{v} = k\vec{u}$

REMARQUES

- Comme $\vec{0} = 0 \vec{u}$, le vecteur nul est colinéaire à tout vecteur.
- Deux vecteurs non nuls sont colinéaires si, et seulement si, ils ont la même direction.

APPLICATIONS GÉOMÉTRIQUES

AVEC LES MILIEUX

MILIEU D'UN SEGMENT

Étant donné un segment [AB]. Chacune des propriétés suivantes caractérise le milieu I du segment

- 1) $\overrightarrow{AI} = \overrightarrow{IB}$ 011
- 2) $\overrightarrow{IA} + \overrightarrow{IB} = \overrightarrow{0}$ ou 3) $\overrightarrow{AB} = 2\overrightarrow{AI}$.
- 4) Pour tout point M du plan $\overrightarrow{MA} + \overrightarrow{MB} = 2\overrightarrow{MI}$.
- * DÉMONSTRATION
- 1. L'égalité $\overrightarrow{AI} = \overrightarrow{IB}$ caractérise le milieu I du segment [AB] (conséquence de la définition de l'égalité de deux vecteurs).
- 2. I milieu du segment $\overrightarrow{AB} \iff \overrightarrow{AI} = \overrightarrow{IB} \iff \overrightarrow{IA} = -\overrightarrow{IB} \iff \overrightarrow{IA} + \overrightarrow{IB} = \overrightarrow{0}$
- 3. I milieu du segment $[AB] \iff \overrightarrow{AI} = \overrightarrow{IB} \iff 2\overrightarrow{AI} = \overrightarrow{AI} + \overrightarrow{IB} \iff 2\overrightarrow{AI} = \overrightarrow{AB}$
- 4. Si I est le milieu du segment [AB], alors pour tout point M

$$\overrightarrow{MA} + \overrightarrow{MB} = \left(\overrightarrow{MI} + \overrightarrow{IA}\right) + \left(\overrightarrow{MI} + \overrightarrow{IB}\right) = 2\overrightarrow{MI} + \underbrace{\overrightarrow{IA} + \overrightarrow{IB}}_{-\overrightarrow{A}} = 2\overrightarrow{MI}$$

Réciproquement, la propriété $\overrightarrow{MA} + \overrightarrow{MB} = 2\overrightarrow{MI}$ étant vraie pour tout point M on peut l'appliquer au point *I*. Soit :

 $\overrightarrow{IA} + \overrightarrow{IB} = 2\overrightarrow{II} = \overrightarrow{0}$

Ce qui prouve que I est le milieu du segment [AB]

THÉORÈME

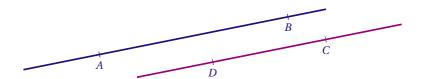
Soit ABC un triangle, I et I les milieux respectifs de [AB] et [AC] alors $\overrightarrow{BC} = 2\overrightarrow{IJ}$

* DÉMONSTRATION

$$\overrightarrow{BC} = \overrightarrow{BA} + \overrightarrow{AC} = 2\overrightarrow{IA} + 2\overrightarrow{AJ} = 2\left(\overrightarrow{IA} + \overrightarrow{AJ}\right) = 2\overrightarrow{IJ}$$

PARALLÉLISME ET ALIGNEMENT

- Deux droites (AB) et (CD) sont parallèles si, et seulement si, les vecteurs \overrightarrow{AB} et \overrightarrow{CD} sont colinéaires.
- Trois points A, B et C sont alignés si, et seulement si, les vecteurs \overrightarrow{AB} et \overrightarrow{AC} sont colinéaires.
- **米 DÉMONSTRATION**
- Si (AB)//(CD) alors, les vecteurs \overrightarrow{AB} et \overrightarrow{CD} ont la même direction donc ils sont colinéaires.



Réciproquement si les vecteurs \overrightarrow{AB} et \overrightarrow{CD} sont colinéaires alors, ils ont la même direction donc (AB)//(CD)

 \overrightarrow{AB} et \overrightarrow{AC} sont colinéaires signifie donc (AB)//(AC). Deux droites parallèles ayant un point commun sont confondues.

EXEMPLES

EXEMPLE 1: CONSTRUCTION DE POINTS

La méthode pour construire un point *M* défini par une égalité vectorielle est d'obtenir une relation du type :

$$\overrightarrow{OM} = \overrightarrow{u}$$

origine vecteur connue connue

Soit trois points non alignés A, B et C. Construire le point M défini par $\overrightarrow{MA} - 3\overrightarrow{MB} = \overrightarrow{AC}$

— Choisissons par exemple A comme « origine connue »

$$\overrightarrow{MA} - 3\overrightarrow{MB} = \overrightarrow{AC} \iff \overrightarrow{MA} - 3\left(\overrightarrow{MA} + \overrightarrow{AB}\right) = \overrightarrow{AC}$$

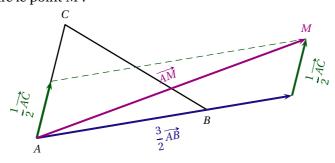
$$\iff \overrightarrow{MA} - 3\overrightarrow{MA} - 3\overrightarrow{AB} = \overrightarrow{AC}$$

$$\iff -2\overrightarrow{MA} = 3\overrightarrow{AB} + \overrightarrow{AC}$$

$$\iff \overrightarrow{MA} = -\frac{3}{2}\overrightarrow{AB} - \frac{1}{2}\overrightarrow{AC}$$

$$\iff \overrightarrow{AM} = \frac{3}{2}\overrightarrow{AB} + \frac{1}{2}\overrightarrow{AC}$$

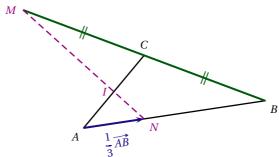
— Nous pouvons construire le point *M* :



EXEMPLE 2 : PARALLÉLISME, ALIGNEMENT

Montrer que des points sont aligné, ou sont sur des droites parallèles, revient à montrer que des vecteurs sont colinéaires.

Soit ABC un triangle, I le milieu de [AC], M est le symétrique de B par rapport à C et le point N est tel que $\overrightarrow{AN} = \frac{1}{3}\overrightarrow{AB}$. Les points M, I et N sont-ils alignés?



A. YALLOUZ (MATH@ES)

Page 8 sur 19

- *I* est le milieu du segment [AC] donc $\overrightarrow{AI} = \frac{1}{2}\overrightarrow{AC}$
- M est le symétrique de B par rapport à C donc C est le milieu du segment [BM] d'où $\overrightarrow{MC} = \overrightarrow{CB}$.

Exprimons les vecteurs \overrightarrow{MI} et \overrightarrow{IN} en fonction des vecteurs \overrightarrow{AB} et \overrightarrow{AC} :

$$\overrightarrow{MI} = \overrightarrow{MC} + \overrightarrow{CI} = \overrightarrow{CB} - \frac{1}{2}\overrightarrow{AC} = \overrightarrow{CA} + \overrightarrow{AB} - \frac{1}{2}\overrightarrow{AC} = \overrightarrow{AB} - \frac{3}{2}\overrightarrow{AC}$$

$$\overrightarrow{IN} = \overrightarrow{IA} + \overrightarrow{AN} = -\frac{1}{2}\overrightarrow{AC} + \frac{1}{3}\overrightarrow{AB}$$

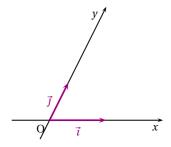
Ainsi,
$$\overrightarrow{MI} = \overrightarrow{AB} - \frac{3}{2}\overrightarrow{AC}$$
 et $\overrightarrow{IN} = \frac{1}{3}\overrightarrow{AB} - \frac{1}{2}\overrightarrow{AC}$ d'où $\overrightarrow{MI} = 3\overrightarrow{IN}$.

Par conséquent, les vecteurs \overrightarrow{MI} et \overrightarrow{IN} sont colinéaires donc les points M, I et N sont alignés.

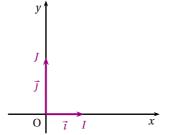
V COORDONNÉES

1 REPÈRE DU PLAN

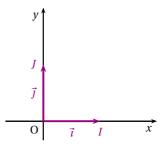
On appelle base tout couple $(\vec{\imath}, \vec{\jmath})$ de vecteurs non colinéaires. Un repère du plan est un triplet $(O; \vec{\imath}, \vec{\jmath})$ où O est un point du plan (appelé origine du repère) et $(\vec{\imath}, \vec{\jmath})$ une base.



Repère quelconque



Repère orthogonal $(OI) \perp (OJ)$



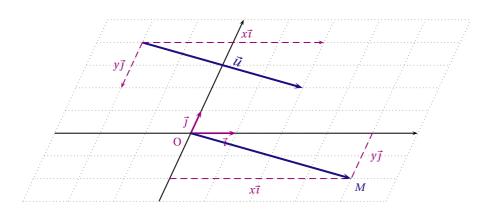
Repère orthonormé $(OI) \perp (OJ)$ et OI = OJ

2 COORDONNÉES D'UN VECTEUR

Le plan est muni d'un repère $(0; \vec{\imath}, \vec{\jmath})$. Soit \vec{u} un vecteur.

On appelle coordonnées du vecteur \vec{u} les coordonnées du point M(x; y) dans le repère $(0; \vec{\iota}, \vec{\jmath})$ tel que $\overrightarrow{OM} = \vec{u}$.

On note indifféremment $\vec{u}(x; y)$ ou $\vec{u}\begin{pmatrix} x \\ y \end{pmatrix}$.



- (x; y) sont les coordonnées du point M dans le repère $(0; \vec{\imath}, \vec{\jmath})$ signifie que $\overrightarrow{OM} = x\vec{\imath} + y\vec{\jmath}$.
- $-\begin{pmatrix} x \\ y \end{pmatrix}$ sont les coordonnées du vecteur \vec{u} dans le repère $(0; \vec{t}, \vec{j})$ signifie que $\vec{u} = x\vec{t} + y\vec{j}$.

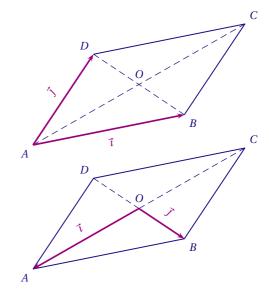
REMARQUE

Les coordonnées d'un vecteur dépendent du choix du repère.

EXEMPLE

ABCD est un parallélogramme de centre O.

- Dans le repère $(A; \overrightarrow{AB}, \overrightarrow{AC})$: $A(0;0), B(1;0), C(1;1), D(0;1), \overrightarrow{AC} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \text{ et } \overrightarrow{BD} \begin{pmatrix} -1 \\ 1 \end{pmatrix}$
- Dans le repère $\left(0;\overrightarrow{OA},\overrightarrow{OB}\right)$: $A(1;0), B(0;1), C(-1;0), D(0;-1), \overrightarrow{AC} \begin{pmatrix} -2\\0 \end{pmatrix} \text{ et } \overrightarrow{BD} \begin{pmatrix} 0\\-1 \end{pmatrix}$



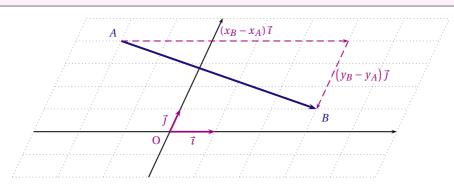
PROPRIÉTÉS DES COORDONNÉES

Soit $(0; \vec{\imath}, \vec{\jmath})$ un repère du plan, $\vec{u} \begin{pmatrix} x \\ y \end{pmatrix}$ et $\vec{v} \begin{pmatrix} x' \\ y' \end{pmatrix}$ deux vecteurs :

- $\vec{u} = \vec{0}$ équivaut à x = 0 et y = 0.
- $\vec{u} = \vec{v}$ équivaut à x = x' et y = y'.
- Le vecteur $\vec{u} + \vec{v}$ a pour coordonnées $\begin{pmatrix} x + x' \\ y + y' \end{pmatrix}$.
- pour tout réel k, le vecteur $k\vec{u}$ a pour coordonnées $\begin{pmatrix} kx \\ ky \end{pmatrix}$.

3 COORDONNÉES DU VECTEUR AB

Soit $(O; \vec{\imath}, \vec{\jmath})$ un repère du plan et deux points $A(x_A; y_A)$ et $B(x_B; y_B)$. Les coordonnées du vecteur \overrightarrow{AB} dans le repère $(O; \vec{\imath}, \vec{\jmath})$ sont $\overrightarrow{AB}\begin{pmatrix} x_B - x_A \\ y_B - y_A \end{pmatrix}$



* DÉMONSTRATION

D'après la relation de Chasles $\overrightarrow{AB} = \overrightarrow{AO} + \overrightarrow{OB} = \overrightarrow{OB} - \overrightarrow{OA}$. Donc les coordonnées du vecteur \overrightarrow{AB} sont $\overrightarrow{AB} \begin{pmatrix} x_B - x_A \\ y_B - y_A \end{pmatrix}$.

4 COORDONNÉES DU MILIEU D'UN SEGMENT

Soit $(0; \vec{\imath}, \vec{\jmath})$ un repère du plan et deux points $A(x_A; y_A)$ et $B(x_B; y_B)$. Les coordonnées du milieu $I(x_I; y_I)$ du segment [AB] sont :

$$x_I = \frac{x_A + x_B}{2}$$
 et $y_I = \frac{y_A + y_B}{2}$

* DÉMONSTRATION

I est le milieu du segment [*AB*] d'où $2\overrightarrow{OI} = \overrightarrow{OA} + \overrightarrow{OB}$ soit $\overrightarrow{OI} = \frac{1}{2} (\overrightarrow{OA} + \overrightarrow{OB})$

5 CONDITION DE COLINÉARITÉ

Soit $(O; \vec{\iota}, \vec{\jmath})$ un repère du plan. Les vecteurs $\vec{u} \begin{pmatrix} x \\ y \end{pmatrix}$ et $\vec{v} \begin{pmatrix} x' \\ y' \end{pmatrix}$ sont colinéaires si, et seulement si,

$$xy' - x'y = 0$$

※ DÉMONSTRATION

- Dans le cas où l'un des deux vecteurs est nul, les vecteurs sont colinéaires et la relation xy' x'y = 0 est vérifiée car x = y = 0 ou x' = y' = 0.
- Dans le cas où les deux vecteurs sont non nuls, dire que \vec{u} et \vec{v} sont colinéaires signifie qu'il existe un réel k tel que $\vec{v} = k\vec{v}$. Soit $\begin{cases} x' = kx \\ y' = ky \end{cases}$ ce qui équivaut à xy' x'y = 0.

EXEMPLE

Dans la figure ci-dessous, ABC est un triangle, K est le milieu de [BC], L est le symétrique du point A par rapport à B.

Déterminer la position du point *M* sur la droite (*AC*) pour que les points *K*, *L* et *M* soient alignés.



Dans le repère $(A; \overrightarrow{AB}, \overrightarrow{AC})$ nous avons A(0; 0), B(1; 0), C(0; 1).

- Les coordonnées du point K milieu du segment [BC] sont $K\left(\frac{1}{2};\frac{1}{2}\right)$.
- L est le symétrique du point A par rapport à B donc $\overrightarrow{AL} = 2\overrightarrow{AB}$. Les coordonnées du point L sont L(2;0).
- M est un point de la droite (AC) donc $\overrightarrow{AM} = y\overrightarrow{AC}$ d'où M a pour coordonnées M(0; y).

Les points K, L et M sont alignés si, et seulement si, les vecteurs \overrightarrow{LK} et \overrightarrow{LM} sont colinéaires. Calculons les coordonnées des vecteurs \overrightarrow{LK} et \overrightarrow{LM} :

$$\overrightarrow{LK} \begin{pmatrix} x_K - x_L \\ y_K - y_L \end{pmatrix} \quad \text{soit} \quad \overrightarrow{LK} \begin{pmatrix} \frac{1}{2} - 2 \\ \frac{1}{2} - 0 \end{pmatrix} \iff \overrightarrow{LK} \begin{pmatrix} -\frac{3}{2} \\ \frac{1}{2} \end{pmatrix}$$
et
$$\overrightarrow{LM} \begin{pmatrix} x_M - x_L \\ y_M - y_L \end{pmatrix} \quad \text{soit} \quad \overrightarrow{LK} \begin{pmatrix} 0 - 2 \\ y - 0 \end{pmatrix} \iff \overrightarrow{LM} \begin{pmatrix} -2 \\ y \end{pmatrix}$$

Les vecteurs \overrightarrow{LK} et \overrightarrow{LM} sont colinéaires pour y solution de l'équation :

$$-\frac{3}{2} \times y - (-2) \times \frac{1}{2} = 0 \iff -\frac{3}{2} \times y = -1 \iff y = \frac{2}{3}$$

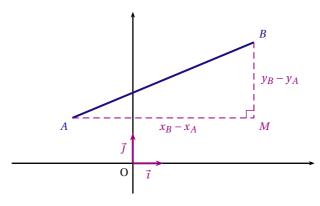
Ainsi, M est le point de la droite (AC) tel que $\overrightarrow{AM} = \frac{2}{3}\overrightarrow{AC}$

6 DISTANCE DANS UN REPÈRE ORTHONORMÉ

Soient $A(x_A; y_A)$ et $B(x_B; y_B)$ deux points du plan muni d'un repère *orthonormal* $(0; \vec{\imath}, \vec{\jmath})$, la distance AB est donné par

$$AB = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2}$$

* DÉMONSTRATION



Comme $(O; \vec{\imath}, \vec{\jmath})$ est un repère orthonormal, le triangle AMB est un triangle rectangle en M. D'après le théorème de Pythagore :

$$AB^{2} = AM^{2} + MB^{2}$$
Soit $AB^{2} = (x_{B} - x_{A})^{2} + (y_{B} - y_{A})^{2}$
d'où $AB = \sqrt{(x_{B} - x_{A})^{2} + (y_{B} - y_{A})^{2}}$

EXEMPLE

Le plan est muni d'un repère orthonormal $(0; \vec{\imath}, \vec{\jmath})$. On considère les points A(-1; -2), B(2; 2) et C(-2; 5). Quelle est la nature du triangle ABC?

Calculons les longueurs des trois côtés du triangle ABC :

--
$$AB = \sqrt{(2 - (-1))^2 + (2 - (-2))^2} = \sqrt{9 + 16} = \sqrt{25} = 5$$

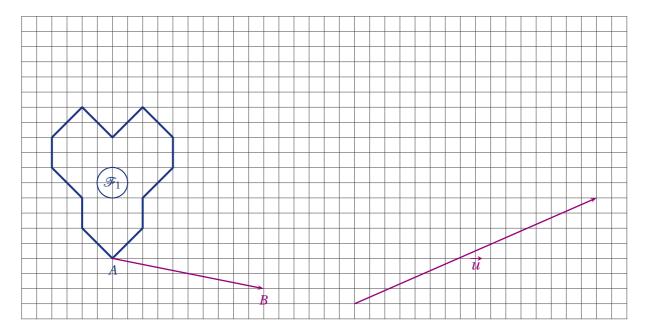
-- $AC = \sqrt{(-2 - (-1))^2 + (5 - (-2))^2} = \sqrt{1 + 49} = \sqrt{50} = 5\sqrt{2}$
-- $BC = \sqrt{(-2 - 2)^2 + (5 - 2)^2} = \sqrt{16 + 9} = \sqrt{25} = 5$

Nous avons $AC^2 = AB^2 + BC^2$ alors, d'après la réciproque du théorème de Pythagore, le triangle ABC est rectangle en B.

En outre AB = BC donc ABC est un triangle rectangle isocèle en B.

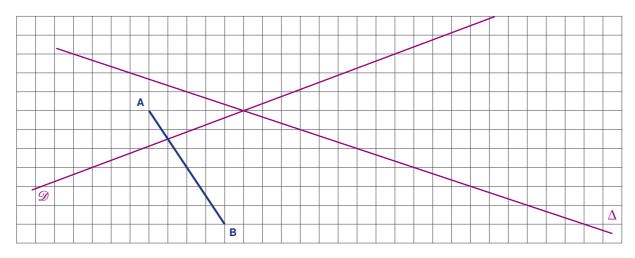
A. YALLOUZ (MATH@ES)

Page 12 sur 19



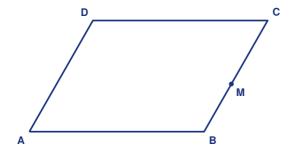
- 1. Tracer la figure \mathscr{F}_2 image de la figure \mathscr{F}_1 par la translation de vecteur \overrightarrow{AB} .
- 2. Tracer la figure \mathscr{F}_3 image de la figure \mathscr{F}_2 par la translation de vecteur \overrightarrow{u} .

EXERCICE 2



Construire un point E sur la droite Δ et un point F sur la droite $\mathcal D$ de façon que ABEF soit un parallélogramme.

EXERCICE 3



ABCD est un parallélogramme. M est un point du segment [BC].

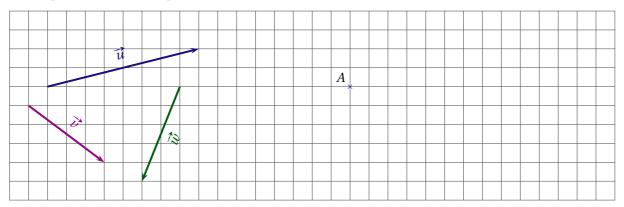
1. Construire le point N tel que le quadrilatère AMNB soit un parallélogramme.

A. Yallouz (MATH@ES) Page 13 sur 19

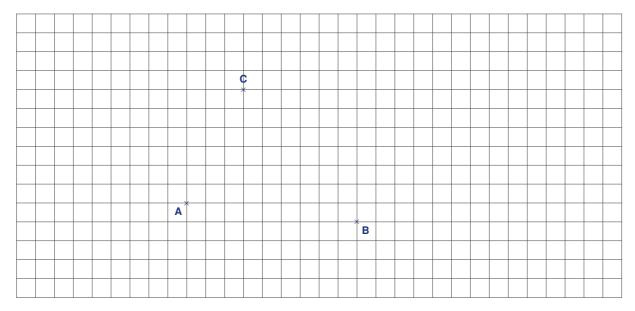
2. Montrer que les segments [CM] et [DN] ont le même milieu.

EXERCICE 4

Placer les points M et N tels que $\overrightarrow{AM} = \overrightarrow{u} + \overrightarrow{v}$ et $\overrightarrow{AN} = \overrightarrow{w} - \overrightarrow{v}$



EXERCICE 5



- 1. Placer les points M et N tels que $\overrightarrow{AM} = \overrightarrow{AB} + \overrightarrow{AC}$ et $\overrightarrow{MN} = \overrightarrow{AB} \overrightarrow{AC}$.
- 2. Montrer que B est le milieu du segment [AN].

EXERCICE 6

ABCD est un parallélogramme de centre O.

- 1. Montrer que $\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} + \overrightarrow{OD} = \overrightarrow{0}$
- 2. En déduire que pour tout point M du plan, $\overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC} + \overrightarrow{MD} = 4\overrightarrow{MO}$.

EXERCICE 7

Soit un triangle \overrightarrow{ABC} . Construire les points M et N tels que $\overrightarrow{MA} + \overrightarrow{MB} = \overrightarrow{BC}$ et $\overrightarrow{NA} + \overrightarrow{NC} = \overrightarrow{CB}$.

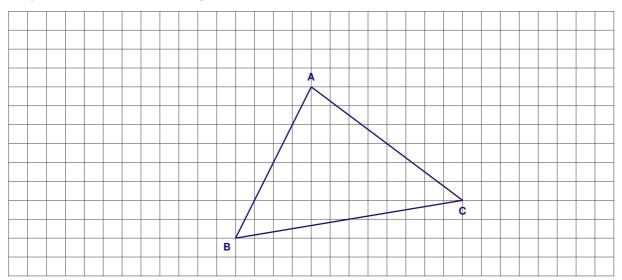
EXERCICE 8

1. Soit M le point du plan tel que $3\overrightarrow{MA} + \overrightarrow{MB} - 2\overrightarrow{MC} = \overrightarrow{0}$. Exprimer le vecteur \overrightarrow{AM} en fonction des vecteurs \overrightarrow{AB} et \overrightarrow{AC} . Construire le point M dans la figure cidessous.

A. YALLOUZ (MATH@ES)

Page 14 sur 19

- 2. Construire le point N tel que $2\overrightarrow{AN} + \overrightarrow{BN} = 2\overrightarrow{CN}$.
- 3. Les points A, M et N sont-ils alignés?



Soit un triangle ABC et les milieux I, J, et K des côtés [AB], [AC] et [BC].

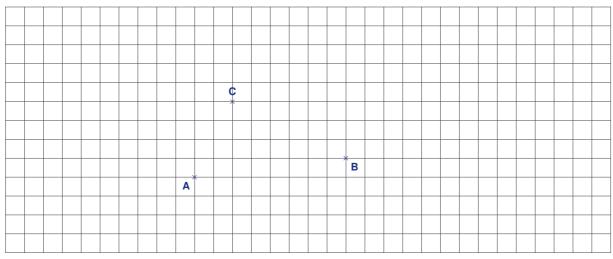
- 1. Construire les points M et N tels que $\overrightarrow{MA} + \overrightarrow{MB} = \overrightarrow{AC}$ et $\overrightarrow{NA} + \overrightarrow{NC} = \overrightarrow{AB}$.
- 2. Les droites (MN) et (IJ) sont-elles parallèles?

EXERCICE 10

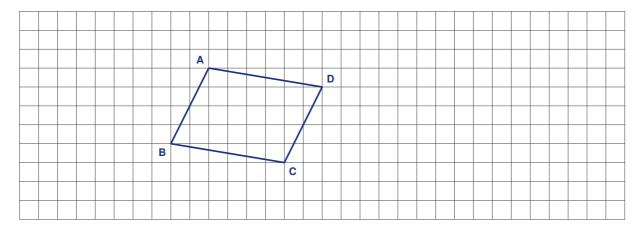
ABCD est un parallélogramme.

- 1. Placer les points E et F définis par les égalités : $\overrightarrow{DE} = \frac{3}{4}\overrightarrow{AB}$ et $\overrightarrow{AF} = -\frac{4}{3}\overrightarrow{AD}$
- 2. Exprimer le vecteur \overrightarrow{AE} en fonction des vecteurs \overrightarrow{AB} et \overrightarrow{AD} .
- 3. Exprimer le vecteur \overrightarrow{BF} en fonction des vecteurs \overrightarrow{AB} et \overrightarrow{AD} .
- 4. Montrer que les droites (AE) et (BF) sont parallèles.

EXERCICE 11

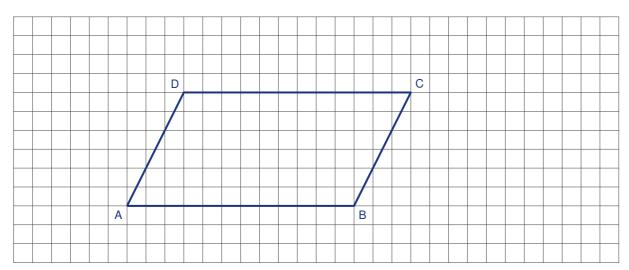


- 1. Placer les points M, N et P tels que $\overrightarrow{AM} = \overrightarrow{AB} + \overrightarrow{AC}$, $\overrightarrow{AN} = \frac{3}{2}\overrightarrow{AB}$ et $\overrightarrow{AP} = 2\overrightarrow{AC} \overrightarrow{AB}$.
- 2. Exprimer le vecteur \overrightarrow{MN} en fonction des vecteurs \overrightarrow{AB} et \overrightarrow{AC} .
- 3. Montrer que les droites (MN) et (AP) sont parallèles.



- 1. ABCD est un parallélogramme. Placer les points E et F tels que $\overrightarrow{AE} = \frac{3}{2} \overrightarrow{AB}$ et $\overrightarrow{AF} = 3\overrightarrow{AD}$.
- 2. Exprimer les vecteurs \overrightarrow{CE} et \overrightarrow{CF} en fonction de \overrightarrow{AB} et \overrightarrow{AD} . En déduire que les points E, C et F sont alignés.

EXERCICE 13



ABCD est un parallélogramme.

- 1. Placer les points E, F et G tels que : $\overrightarrow{AE} = \frac{4}{3}\overrightarrow{AB}$, $\overrightarrow{FD} = -\frac{1}{3}\overrightarrow{AD}$ et $\overrightarrow{AG} = \frac{1}{3}\overrightarrow{AB} + \overrightarrow{AD}$.
- 2. Exprimer le vecteur \overrightarrow{EF} en fonction des vecteurs \overrightarrow{AB} et \overrightarrow{AD} .
- 3. Les points *E*, *F* et *G* sont-ils alignés?

EXERCICE 14

Soit ABC un triangle. On considère les points M et N tels que $\overrightarrow{BM} = 2\overrightarrow{CA}$ et $\overrightarrow{AN} = \frac{2}{3}\overrightarrow{AB} + \frac{2}{3}\overrightarrow{AC}$.

Les droites (AM) et (BN) sont-elles parallèles?

EXERCICE 15

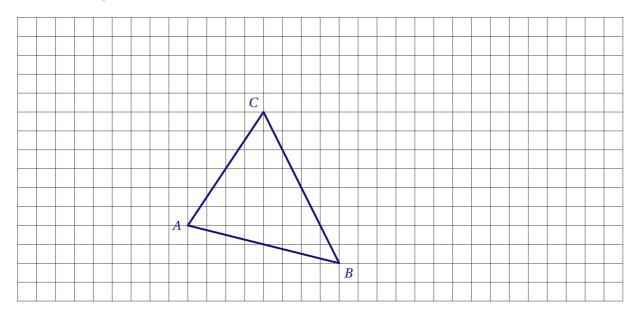
ABCD est un parallélogramme.

- 1. Placer les points E et F définis par les égalités : $\overrightarrow{DE} = \frac{3}{4}\overrightarrow{AB}$ et $\overrightarrow{AF} = -\frac{4}{3}\overrightarrow{AD}$
- 2. Les droites (AE) et (BF) sont-elles parallèles?

Page 17 sur 19

EXERCICE 16

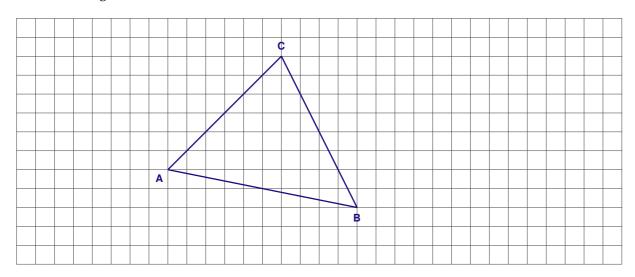
ABC est un triangle.



- 1. Soit *M* le point défini par $\overrightarrow{MA} 3\overrightarrow{MC} = \overrightarrow{AB}$.
 - a) Exprimer le vecteur \overrightarrow{AM} en fonction des vecteurs \overrightarrow{AB} et \overrightarrow{AC} .
 - b) Placer le point *M* sur la figure.
- 2. Dans le repère $(A; \overrightarrow{AB}, \overrightarrow{AC})$ on considère le point D de coordonnées (1; 1)
 - a) Placer le point D sur la figure.
 - b) Quelle est la nature du quadrilatère *ABDC*?
- 3. Les droites (BC) et (DM) sont-elles parallèles?

EXERCICE 17

ABC est un triangle.



- 1. Placer les points I, J et K tels que $\overrightarrow{AI} = 2\overrightarrow{AB}$, $\overrightarrow{AJ} = \frac{2}{3}\overrightarrow{AC}$ et K milieu du segment [BC].
- 2. Exprimer les coordonnées des points I, J et K dans le repère $\left(A; \overrightarrow{AB}, \overrightarrow{AC}\right)$.
- 3. Les points *I*, *J* et *K* sont-ils alignés?

Page 18 sur 19

EXERCICE 18

Dans le plan muni d'un repère $(0; \vec{t}, \vec{j})$, on considère les points A(-1; 2), B(-2; -3), C(7; 0) et D(5; 4).

Quelle est la nature du quadrilatère ABCD?

EXERCICE 19

Dans le plan muni d'un repère $(0; \vec{i}, \vec{j})$, on considère les points A(-4; -1), B(3; 2) et C(4; -1).

- 1. Les points A, B et C sont-ils alignés?
- 2. Déterminer les coordonnées du point D tel que $\overrightarrow{BD} = 2\overrightarrow{BA} + \overrightarrow{AC}$. Quelle est la nature du quadrilatère ABCD?

EXERCICE 20

Soit $(0; \vec{\imath}, \vec{\jmath})$ un repère du plan. On considère les points A(-2; 2), $B\left(\frac{1}{2}; \frac{7}{2}\right)$ et $C\left(-\frac{1}{3}; \frac{10}{3}\right)$.

- 1. Les points A, B et C sont-ils alignés?
- 2. Déterminer l'ordonnée y du point $D\left(-\frac{1}{3};y\right)$ tel que les points A, B et D soient alignés.

EXERCICE 21

Dans le plan muni d'un repère $(0; \vec{i}, \vec{j})$ on donne les points A(-1; 1), B(2; 1) et C(-2; 3)

- 1. Déterminer les coordonnées du point M tel que $\overrightarrow{AM} = 2\overrightarrow{BC}$.
- 2. Déterminer les coordonnées du point P tel que $\overrightarrow{BA} + 2\overrightarrow{BC} + \frac{3}{2}\overrightarrow{BP} = \overrightarrow{0}$.
- 3. Les points B, M et P sont-ils alignés?

EXERCICE 22

Dans le plan muni d'un repère $(0; \vec{\imath}, \vec{\jmath})$, on considère les points A(3; 4), B(-2; 1) et C(2; -2).

- 1. Soit *G* le point du plan tel que $\overrightarrow{GA} + \overrightarrow{GB} + \overrightarrow{GC} = \vec{0}$.
 - a) Montrer que $3\overrightarrow{OG} = \overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC}$.
 - b) En déduire les coordonnées du point *G*.
- 2. Soit I le milieu de [BC] . Montrer que les vecteurs \overrightarrow{AG} et \overrightarrow{AI} sont colinéaires.
- 3. Soit *J* le milieu de [AC] . Les points B, G et J sont-ils alignés?
- 4. Que représente le point *G* pour le triangle *ABC*?

EXERCICE 23

Dans le plan muni d'un repère orthonormé $(0; \vec{\imath}, \vec{\jmath})$, on considère les points A(4; -2), B(2; 2), C(-4; -1) et D(-2; -5).

- 1. a) Placer le point *E* tel que le quadrilatère *ABEC* soit un parallélogramme.
 - b) Les droites (AB) et (DE) sont-elles parallèles?
- 2. a) Calculer les coordonnées du point *M* milieu du segment [*BC*].
 - b) Les points A, O et M sont-ils alignés?
- 3. a) Calculer les distances AC et BD.
 - b) Quelle est la nature du quadrilatère ABCD?

EXERCICE 24

Le plan est muni d'un repère orthonormé (unités graphiques 1 cm sur chaque axe)

- 1. Placer les points A(-4, -3), B(-1, 3) et C(3, 1).
- 2. Calculer les coordonnées du point D tel que ABCD soit un parallélogramme puis, placer D sur la figure.
- 3. Calculer les coordonnées du centre *I* du parallélogramme *ABCD*.
- 4. Soit *M* le point défini par

$$\overrightarrow{6BM} = 4\overrightarrow{AC} + 7\overrightarrow{CB}$$

- a) Démontrer que $\overrightarrow{BM} = -\frac{2}{3}\overrightarrow{BA} \frac{1}{2}\overrightarrow{BC}$.
- b) Construire le point *M* sur la figure (*on laissera apparents les traits de construction*).
- c) Calculer les coordonnées de M.
- 5. Les points D, I et M sont-ils alignés? Justifier la réponse.

Le plan est muni d'un repère orthonormé $(0; \vec{\imath}, \vec{\jmath})$. La figure sera complétée tout au long des questions.

- 1. Placer les points A(-5;1), B(3;-3), C(5;1) et E(2;0).
- 2. a) Calculer les coordonnées du point *M* milieu du segment [*AB*].
 - b) Les points *E*, *C* et *M* sont-ils alignés?
- 3. a) Calculer les coordonnées du vecteur \overrightarrow{AB} .
 - b) Calculer les coordonnées du point D tel que le quadrilatère ABCD soit un parallélogramme.
- 4. a) Calculer les distances AC et BD.
 - b) Quelle est la nature du triangle ABC?
- 5. Placer le point N de coordonnées (1;3). Les droites (AN) et (EC) sont-elles parallèles?

EXERCICE 26

Le plan est muni d'un repère orthonormé $(0; \vec{\imath}, \vec{\jmath})$. La figure sera complétée tout au long des questions.

- 1. Placer les points $A\left(-2; \frac{5}{2}\right)$, $B\left(4; -\frac{1}{2}\right)$ et $C\left(3; -\frac{5}{2}\right)$.
- 2. Déterminer les coordonnées du milieu *I* du segment [*AB*].
- 3. Le vecteur $\vec{u}(2;4)$ est-il colinéaire au vecteur \overrightarrow{AB} ? au vecteur \overrightarrow{BC} ?
- 4. Soit D(-1; y) où y est un nombre réel.
 - a) Déterminer y pour que le point D appartienne à la droite (CI). Placer le point D dans le repère.
 - b) Quelle est la nature du quadrilatère ACBD?
- 5. Le point *B* appartient-il au cercle de diamètre [*AC*]?